Enner R. Conformation of Phenylalanine inside the Trpeptides Afa and Gfg Probed by Combining Md Simulations with Nmr, Ftir, Polarized Raman and Vcd Spectroscopy. J. Phys. Chem. B. 2010; 114:3965?978. [PubMed: 20184301] (25). Duitch L, Toal S, Measey TJ, Schweitzer-Stenner R. Triaspartate: A Model Method for Conformationally Flexible Ddd Motifs in Proteins. J. Phys. Chem. B. 2012; 116:5160?171. [PubMed: 22435395] (26). Verbaro D, Mathieu D, Toal SE, Schwalbe H, Schweitzer-Stenner R. Inoized Trilysine: A Model Method for Understanding the Nonrandom Structure of Poly-L-Lysine and Lysine-Containing Motifs in Proteins. J. Phys. Chem. B. 2012; 116:8084?094. [PubMed: 22712805] (27). He L, Navarro AE, Shi Z, Kallenbach NR. Finish Effects Influence Short Model Peptide Conformation. J. Am. Chem. Soc. 2011; 134:1571?576. [PubMed: 22176215] (28). Li W, Qin M, Tie Z, Wang W. Effects of Solvents around the Intrinsic Propensity of Peptide Backbone Conformations. Phys. Rev. E. 2011; 84:041933.J Phys Chem B. Author manuscript; out there in PMC 2014 April 11.NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author ManuscriptToal et al.Web page(29). Ioannou F, Archontis G, Leontidis E. Specific Interactions of Sodium Salts with Alanine Dipeptide and Tetrapeptide in Water: Insights from Molecular Dynamics. J. Phys. Chem. B. 2011; 115:13389?3400. [PubMed: 21978277] (30). Feig M. Is Alanine Dipeptide a great Model for Representing the Torsional Preferences of Protein Backbones. J. Chem. Theory Comput. 2008; 4:1555?564. (31). Shi Z, Chen K, Liu Z, Ng A, Bracken WC, Kallenbach NR. Polyproline Ii Propensities from Ggxgg Peptides Reveal an Anticorrelation with B-Sheet Scales. Proc. Natl. Acad. Sci. USA. 2005; 102:17964?7968. [PubMed: 16330763] (32).Formula of 1301214-72-1 Garcia-Pietro FF, Galv IF, Aguliar MA, Martin ME.2-Ethylnicotinic acid Chemscene Study around the Conformational Equilibrium of the Alanine Dipeptide in Water Answer by utilizing the Averaged Solvent Electrostatic Potential from Molecular Dynamics Methodology. J. Chem. Phys. 2011; 135:194502. [PubMed: 22112087] (33). Kim YS, Wang J, Hochstrasser RM. Two-Dimensional Infrared Spectroscopy on the Alanine Dipeptide in Aqueous Option.PMID:33491983 J. Phys. Chem. B. 2005; 109:7511?521. [PubMed: 16851862] (34). Avbelj F, Gradolnik SG, Grdadolnik J, Baldwin RL. Intrinsic Backbone Preferences Are Totally Present in Blocked Amino Acids. Proc. Natl. Acad. Sci. USA. 2006; 103:1272?277. [PubMed: 16423894] (35). Grdadolnik J, Grdadolnik SG, Avbelj F. Determination of Conformational Preferences of Dipeptides Employing Vibrational Spectroscopy. J. Phys. Chem. B. 2008; 112:2712?718. [PubMed: 18260662] (36). Ishizuka R, Huber GA, McCammon JA. Solvation Effect around the Conformation of Alanine Dipeptide: Integral Equation Approach. J. Phys. Chem. Letts. 2011; 1:2279?283. [PubMed: 20694049] (37). Cruz V, Ramos j. Martinez-Salazar J. Water-Mediated Conformations with the Alanine Dipeptide as Revealed by Distributed Umbrella Sampling Simulations, Quantum Mechanics Primarily based Calculations, and Experimental Information. J. Phys. Chem. B. 2011; 115:4880?886. [PubMed: 21469661] (38). Jansen TC, Knoester J. Nonadiabatic Effects in the Two-Dimensional Infrared Spectra of Peptides: Application to Alanine Dipeptide. J. Phys. Chem. B. 2006; 110:22910?2916. [PubMed: 17092043] (39). Xu C, Wang J, Liu H. A Hamiltonian Replica Exchange Method and Its Application for the Study of Side-Chain Variety and Neighbor Effects on Peptide Backbone Conformations. J. Chem. Theory Comput. 2008; four:1348?359. (40). Han C, Wang J. Influence of an.